

Vanishing Lights: A Review of Firefly Diversity, Distribution, and Conservation Challenges in India

Chiranjeev Pandey¹, Akhilesh Kumar², Majid Ali¹, Ewraj Janghel³, and Lokesh Kumar⁴,

¹Department of Zoology, Government Digvijay Autonomous P.G. College, Rajnandgaon Chhattisgarh, India

²Department of Zoology, Rani Durgawati Govt. College, Salhewara (CG) India

³Department of Zoology, Rani Avanti Bai Lodhi Government College, Parpodi Bemetara, Chhattisgarh, India

⁴Department of Botany, Rani Durgawati Govt. College, Salhewara (CG) India

ABSTRACT

Fireflies (Coleoptera: Lampyridae) are among the most fascinating bioluminescent insects, serving vital ecological roles in communication, reproduction, and environmental bioindication. India harbors exceptional firefly diversity, with about forty-five species documented under genera such as *Abscondita*, *Asymmetricata*, *Luciola*, *Lamprigerina*, *Pteroptyx*, and *Curtos*. These taxa inhabit diverse ecosystems, including tropical forests, paddy fields, wetlands, and montane habitats, reflecting India's broad biogeographic variability. Recent taxonomic discoveries such as *Absconditaterinalis* and *Lamprigeratenebrosa* underscore the nation's underexplored faunal richness. However, escalating anthropogenic pressures are driving population declines across regions. Habitat destruction, pesticide contamination, artificial light pollution, and climate fluctuations have emerged as principal threats. Studies from Andhra Pradesh, Chhattisgarh, and Tamil Nadu indicate local extinctions, with formerly abundant species nearly disappearing. Despite their ecological and cultural importance, no Indian firefly species has yet been assessed by the IUCN, highlighting critical gaps in research and conservation policy. Effective management requires integrated approaches combining habitat restoration, pesticide regulation, and mitigation of light pollution, complemented by molecular taxonomy, long-term monitoring, and citizen-science engagement. Synthesizing current data, this review emphasizes that fireflies are not merely aesthetic symbols but key indicators of ecosystem integrity. Their disappearance mirrors widespread ecological decline and underscores the urgency of developing a coordinated national framework to conserve India's luminous heritage and ensure that these "vanishing lights" continue to illuminate its nocturnal landscapes.

Keywords: Fireflies, Lampyridae, Diversity, Distribution, Light Pollution, Conservation, India.

Citation: Chiranjeev Pandey, Akhilesh Kumar, Majid Ali, Ewraj Janghel, and Lokesh Kumar [2025]. Vanishing Lights: A Review of Firefly Diversity, Distribution, and Conservation Challenges in India. *Journal of Diversity Studies*.

DOI: <https://doi.org/10.51470/JOD.2025.4.2.254>

Corresponding Author: Chiranjeev Pandey

E-mail Address: chiranjeev717@gmail.com

Article History: Received 12 September 2025 | Revised 14 October 2025 | Accepted 16 November 2025 | Available Online December 16, 2025

Copyright: © 2025 by the author. The license of *Journal of Diversity Studies*. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (<https://creativecommons.org/licenses/by/4.0/>).

INTRODUCTION

Fireflies (Coleoptera: Lampyridae) represent one of nature's most fascinating bioluminescent taxa, exhibiting light production that serves both ecological and evolutionary roles in communication, reproduction, and defense [1]. Globally, over 2,200 firefly species are known, with the family Lampyridae alone comprising nearly 1,900 species under 90 genera and eight subfamilies, displaying near-cosmopolitan distribution [2]. Within India, the subfamily Luciolinae dominates, encompassing approximately 35 species across 11 genera, including recent additions such as *Triangulara sunderbanensis* and *Medeopteryx bengalensis* [3]. These species demonstrate remarkable endemism and diversity across ecological gradients, ranging from coastal plains to moist deciduous forests.

Indian fireflies not only contribute to the ecological balance as predators, prey, and potential pollinators but also serve as indicators of environmental quality, particularly due to their sensitivity to pollutants and habitat disturbance [4].

Their lifecycle intricately depends on aquatic and semi-aquatic habitats where larvae are often carnivorous, feeding on gastropods, while adults engage in courtship and mating behaviors on vegetation and display plants [5]. The association between fireflies and local flora plays a crucial role in sustaining populations; studies in eastern India revealed that seven firefly species utilized 56 different plant species for courtship, oviposition, and resting, with Fabaceae being the most preferred family [6]. Such plant-insect relationships highlight the delicate ecological interdependence that supports firefly abundance and visibility in natural ecosystems.

Despite their ecological importance, fireflies across India are facing rapid decline due to multiple anthropogenic pressures, including urbanization, habitat fragmentation, pollution, pesticide exposure, and light pollution [7]. The bioaccumulation of heavy metals in soil-water-plant-firefly food chains has further revealed their vulnerability to contamination in agricultural landscapes of the Gangetic plains [8]. In addition, deforestation and the conversion of wetlands into croplands have resulted in habitat loss, contributing to the disappearance

of bioluminescent populations in many Indian states [9]. Conservation-focused monitoring programs, including citizen science initiatives, have begun to record these “vanishing lights,” yet comprehensive national assessments remain scarce.

The dwindling visibility of fireflies symbolizes an urgent ecological concern, calling for integrative conservation approaches that include habitat restoration, pollution mitigation, and light pollution management. Synthesizing the current research on their taxonomy, ecology, and threats, this review aims to provide an updated perspective on the diversity, distribution, and conservation challenges of Indian fireflies emphasizing their ecological significance and the need for immediate conservation strategies to prevent their silent extinction.

Review of Literature

Fireflies (Coleoptera: Lampyridae) represent an ecologically significant group of beetles that illuminate both the night sky and the study of biodiversity, owing to their unique bioluminescence and sensitivity to environmental changes. Research on their diversity, distribution, and conservation across India has expanded in recent years, revealing critical ecological interdependencies and growing conservation challenges.

Diversity and Distribution Patterns

The diversity of fireflies in India encompasses several genera, including *Abscondita*, *Asymmetricata*, *Curtos*, *Lamprigera*, and *Pyrocoelia*, distributed across habitats ranging from tropical forests to agroecosystems [10]. Studies in the Anamalai Tiger Reserve, Tamil Nadu, documented eight species, including *Abscondita perplexa* and *Asymmetricata humeralis*, with species-specific preferences for dark habitats and minimal artificial lighting [11]. Similarly, *Abscondita perplexa* exhibited strong associations with certain vegetation families such as Combretaceae and Dipterocarpaceae in Kanger Valley National Park, Chhattisgarh, highlighting the ecological significance of plant–firefly interactions [12]. Habitat-specific studies from Assam demonstrated notable differences in population density and vertical flight activity among species. For instance, *Abscondita Chinensis* and *Asymmetricata Circumdata* were found more abundant in grasslands than in woodland habitats, showing height-specific flight preferences that correlate with vegetation structure and light intensity [13].

Fireflies as Ecological Indicators

Fireflies are increasingly recognized as bioindicators of ecosystem integrity. Studies in the Painganga Wildlife Sanctuary, Maharashtra, revealed that firefly abundance is strongly correlated with pollution-free environments characterized by undisturbed soil, high humidity, low artificial light, and pure water sources [14]. The ecological roles of fireflies extend beyond their glow. Larvae are voracious predators of soft-bodied invertebrates such as snails and worms, contributing to pest control and nutrient cycling, while adults participate in pollination networks [15]. Their bioluminescence, governed by luciferin–luciferase reactions, functions in mating and predator deterrence, with species-specific flash patterns playing critical roles in reproductive success and species recognition.

Threats to Firefly Populations

Firefly populations across India are under increasing threat from anthropogenic pressures. Artificial light at night (ALAN) has emerged as a major disruptor of bioluminescent communication. Experimental observations in Anamalai Tiger Reserve showed that *A. perplexa* avoided illuminated environments and preferred darkness, confirming the adverse impact of artificial wavelengths, especially blue and green light [16]. Similar findings from global studies indicate that artificial lighting interferes with reproductive signaling and reduces mating success [17].

Habitat loss from agricultural intensification and pesticide usage further exacerbates population declines. Persistent chemicals such as organophosphates and neonicotinoids alter soil ecology and disrupt larval development [18]. In Chhattisgarh and West Bengal, firefly habitats near croplands have exhibited reduced diversity due to agrochemical runoff and fragmentation [19]. These trends mirror global patterns of decline linked to land-use change and pollution.

Conservation Efforts and Citizen Science

Recent initiatives emphasize citizen participation in documenting firefly occurrences. Rana, Rayal, and Uniyal (2022) implemented a nationwide citizen science project through the *Journal of Threatened Taxa*, which provided baseline data on species distribution and the status of “flashing beetles” across multiple Indian states.

Knowledge Gaps and Research Needs

Despite increasing studies, firefly research in India remains geographically biased, with most reports concentrated in southern and northeastern regions. Long-term monitoring of population dynamics and genetic studies is limited [20]. The interplay between land-use change, artificial illumination, and climate variability also warrants systematic exploration. Integration of ecological modeling, citizen science, and policy-driven conservation programs could offer new pathways for mitigating declines.

Population Decline and Regional Case Studies

Several regional studies across India have provided empirical evidence of a dramatic decline in firefly populations. In Andhra Pradesh, *Abscondita chinensis* populations in Barrankula village decreased from over 500 individuals per 10 m² in 1996 to fewer than 20 by 2019, attributed primarily to pesticide contamination from paddy fields and changing climatic conditions [21]. This long-term decline emphasizes the susceptibility of fireflies to agricultural intensification and pollution, echoing global findings linking pesticide exposure to reduced reproductive success in luminescent beetles.

A similar pattern of local extinction was reported in Ambikapur, Chhattisgarh, where formerly abundant populations of *Lampyridae* have nearly vanished due to habitat loss, deforestation, pesticide use, and increased artificial lighting [22]. Interviews with residents documented a sharp reduction in sightings over recent decades, coinciding with intensified human encroachment and environmental degradation. Such region-specific observations underscore the urgent need for habitat restoration and policy-driven conservation frameworks.

Updated Diversity and Biogeographical Insights

Recent taxonomic and distributional research has greatly expanded knowledge of India's firefly fauna.

Ghosh, Sarkar, and Chakraborty (2023) compiled an updated national checklist of *Luciolinae* fireflies, documenting 33 species across 12 genera, including *Abscondita Chinensis*, *Asymmetricata Circumdata*, *Luciola Aurantiaca*, and *Pygoluciolavitalisi*.

The study provided new distributional records from the eastern states and identified significant knowledge gaps in the central and western regions. Such data are crucial for establishing baseline diversity patterns and guiding targeted conservation measures.

Comparative studies in northeastern India have shown species such as *A. circumdata* and *A. chinensis* to exhibit distinct luminescence peaks at 562 nm and 570 nm, respectively, reflecting adaptive responses to habitat and temperature gradients [23]. These variations in bioluminescent behavior are key ecological traits with implications for taxonomy, mating ecology, and population monitoring.

Global Perspectives and Emerging Conservation Frameworks

Globally, firefly declines have been recognized as part of a broader biodiversity crisis. The "Firefly Extinction and Preservation" report (2021) emphasizes that the combined pressures of light pollution, pesticide exposure, habitat destruction, and climate change are leading to synchronized declines across continents. The report advocates integrated conservation strategies encompassing habitat restoration, environmental education, and sustainable land management. India's situation mirrors these global patterns but is complicated by rapid urbanization and limited public awareness.

International guidelines such as those proposed by the Xerces Society for Invertebrate Conservation, highlight the role of community engagement and non-chemical pest management in restoring luminescent insect populations [24]. These recommendations align with citizen-science-based approaches adopted in India, such as the *Firefly Watch* initiative, which encourages local participation in population surveys and habitat monitoring [25].

Conservation Challenges and Future Directions

Despite mounting evidence of population decline, India lacks a national conservation framework specifically addressing *Lampyridae*. Habitat protection measures are largely localized, and many ecologically important firefly habitats remain unprotected or poorly documented. Incorporating fireflies into biodiversity assessment programs, particularly in protected areas like tiger reserves and wetlands, could provide early indicators of ecological change [26].

Future research must prioritize molecular identification, long-term ecological monitoring, and GIS-based habitat mapping. Strengthening collaboration among entomologists, forest departments, and citizen scientists can bridge data gaps and facilitate adaptive conservation strategies. The "vanishing lights" of Indian fireflies thus serve as both a warning and a call to preserve bioluminescent biodiversity as an integral part of India's natural heritage.

Recent Taxonomic Discoveries and Regional Records

Recent years have seen an increase in species discovery and distributional documentation of Indian fireflies, contributing significantly to national biodiversity databases.

Ghosh, Sarkar, and Chakraborty (2021) reported two new records of *Luciolinae* species, *Abscondita terminalis* (Olivier, 1883) and *Triangulara frontoflava* Pimpasalee, 2016, for the first time from India, expanding the genus *Abscondita*'s distribution into the eastern states of West Bengal and Odisha. The study provided a revised checklist and detailed morphological characterization, including male genitalia and light organ structure, confirming the rich diversity of Indian *Luciolinae* within the Oriental biogeographic region. Rana and Rayal (2024) further recorded *Lamprigera tenebrosa* (Walker, 1858) from the Doon Valley, Uttarakhand, marking the first record of this *Lampyrinae* species from the Western Himalaya. This discovery highlighted the underexplored faunal richness of north Indian hill ecosystems and emphasized the need for surveys in montane and submontane regions where firefly populations are being increasingly disturbed by land-use changes.

Physiological and Behavioral Adaptations

Understanding the eco-physiology of Indian fireflies has gained momentum through studies exploring feeding plasticity and enzyme function. Investigated the foraging plasticity of *Abscondita terminalis* in two contrasting habitats of West Bengal and found significant variation in gut amylase activity between pre- and post-breeding stages [28].

These biochemical adaptations were correlated with the differential availability of nectar resources, revealing the species' metabolic flexibility in response to ecological stressors. Such studies bridge ecology and biochemistry, providing a mechanistic understanding of how *Lampyridae* adapt to anthropogenic and climatic influences. Parallel biochemical investigations by [27] provided molecular-level insights into Indian fireflies through luciferase gene characterization from *Abscondita* sp., collected from the Indian Institute of Technology, Guwahati

The recombinant luciferase displayed a maximum emission wavelength around 570 nm with optimal activity at pH 7.0, consistent with the typical yellow-green glow of *Luciolinae* species. Phylogenetic analysis revealed close relationships between Indian *Abscondita* species and Southeast Asian lineages, reinforcing the region's role as an evolutionary bridge for luminescent beetles. This molecular advancement not only enhances our understanding of bioluminescent mechanisms but also supports accurate species identification in Indian *Lampyridae*.

Emerging Ecological Insights and Conservation Needs

These taxonomic and physiological advancements collectively underline India's immense, yet vulnerable, firefly diversity. Studies from diverse habitats coastal wetlands, Gangetic plains, and Himalayan foothills demonstrate that firefly distribution patterns are intricately linked with environmental gradients, vegetation type, and microhabitat stability [29]. However, most newly recorded populations occur outside formal protected areas, leaving them susceptible to urbanization, pesticide runoff, and artificial illumination.

Diversity of Fireflies in India

India hosts a remarkable diversity of fireflies (Coleoptera: *Lampyridae*), encompassing both terrestrial and aquatic taxa that inhabit a range of ecosystems from tropical forests to paddy fields and riparian zones.

Approximately 45 species of fireflies have been documented across India, distributed among genera such as *Abscondita*, *Asymmetricata*, *Luciola*, *Pteroptyx*, *Lamprigera*, and *Curtos* [30]. A recent checklist of Luciolinae recorded 33 species from India, including *Abscondita chinensis*, *Asymmetricata circumdata*, *Luciola aurantiaca*, and *Pteroptyx malaccae*, highlighting India's significant contribution to Asian Lampyrid diversity.

Field investigations in regions such as Kanger Valley National Park (Chhattisgarh) have revealed the occurrence of species like *Abscondita perplexa* and the larval forms of *Lamprigera* and *Asymmetricata*, indicating diverse genera coexisting within the same landscape [31]. The ecological associations of these species demonstrate strong habitat preferences, with adults often aggregating near trees and non-flowering plants, while larvae inhabit moist soil or decaying leaf litter, feeding on soft-bodied prey such as snails and earthworms.

The northeastern region of India is emerging as a hotspot for firefly diversity. Described *Asymmetricata circumdata* from Meghalaya as only the second bioluminescent Indian species characterized after *Luciola praeusta*, revealing distinct emission spectra with a peak at 570 nm. Similarly, recent work on *Abscondita* sp. from the Western Ghats showed biochemical variations in luciferase enzymes, underscoring the molecular diversity among Indian Lampyrids [32].

Fireflies also exhibit notable ecological adaptations, including terrestrial and aquatic life histories. Some Indian species, such as *Luciola substriata*, possess facultatively aquatic larvae inhabiting streams and rice paddies, reflecting evolutionary plasticity comparable to East and Southeast Asian congeners [33]. These adaptive traits, combined with India's diverse biogeographic zones from Himalayan foothills to Deccan plains, explain the presence of unique faunal assemblages and region-specific endemism.

Overall, India's Lampyrid fauna remains under-documented, with new distributional records emerging from both published studies and citizen-science approaches. Expanding molecular taxonomy and ecological monitoring programs could greatly refine our understanding of firefly diversity and help formulate strategies for their conservation in the face of habitat loss and light pollution.

Threats and Conservation Challenges

Fireflies, once abundant across Indian landscapes, are now experiencing a rapid and silent decline due to escalating anthropogenic disturbances. Their disappearance from farmlands, forest edges, and wetlands is emblematic of broader ecological degradation. Studies from across India and Asia highlight that habitat destruction, pesticide exposure, artificial light pollution, and climate change are the primary drivers of firefly population decline [34].

Habitat Loss and Fragmentation

The conversion of wetlands, forest edges, and agricultural lands into urbanized or industrial areas has severely impacted firefly habitats. In regions such as Ambikapur (Chhattisgarh), firefly populations have nearly vanished due to large-scale deforestation, infrastructure development, and land conversion [35]. Similarly, in Andhra Pradesh, long-term monitoring revealed a drastic reduction of *Abscondita Chinensis* populations from hundreds in 1996 to only a few dozen by 2019 largely attributed to loss of riparian vegetation and paddy ecosystems [36].

Many firefly larvae are soil- or water-dependent; hence, the destruction of microhabitats such as leaf litter, wetlands, and irrigation canals directly impacts larval survival and recruitment.

Light Pollution and Behavioral Disruption

Artificial light at night (ALAN) has emerged as one of the most critical yet underrecognized threats to bioluminescent insects. Fireflies rely on species-specific flash patterns for mate recognition and communication, which are disrupted by urban and rural artificial lighting. Observations from the Anamalai Tiger Reserve in Tamil Nadu and Kanger Valley National Park in Chhattisgarh revealed that *Abscondita Perplexa* and *Asymmetricata* spp. avoid brightly illuminated habitats, displaying reduced courtship activity under white or yellow sodium lights [37]. These findings correspond with global studies reporting decreased reproductive success and altered flashing synchrony in response to artificial illumination [38].

Agrochemical Pollution

Intensive pesticide use in agricultural landscapes poses a severe toxicological threat to Lampyridae populations. Firefly larvae, which feed on soft-bodied soil invertebrates such as snails and worms, bioaccumulate pesticide residues and heavy metals through the food chain [39].

Recorded sharp population declines in paddy fields treated with organophosphates and neonicotinoids, with sublethal effects including reduced larval emergence and malformed adults. Such chemical pollutants degrade soil and aquatic quality, disrupting the delicate microecosystems necessary for larval development and adult emergence [40].

Climate Change and Seasonal Disturbance

Climate-induced variations in rainfall, temperature, and humidity directly affect the phenology and synchrony of firefly flashes. In tropical regions, monsoon timing influences adult emergence and breeding cycles. Extended droughts or erratic rainfall observed in the Gangetic and Godavari basins delay larval pupation and reduce adult visibility [41]. Similarly, changes in nocturnal humidity can alter luciferase activity, affecting both light intensity and mating efficiency. These physiological stressors compound with habitat fragmentation, pushing local populations toward collapse.

Overexploitation and Cultural Pressure

While fireflies hold aesthetic and cultural value in India, their overcollection for ornamental and scientific purposes has also contributed to local declines. Emphasized the need to regulate the hunting and sale of live fireflies, which are sometimes captured for decorative or tourism-related uses. Overzealous ecotourism in glow-fly habitats particularly near Western Ghats reserves disturbs congregation behaviour and interrupts breeding displays.

Conservation Challenges and Knowledge Gaps

Despite increasing reports of decline, India lacks a coordinated conservation framework specifically addressing fireflies. Current biodiversity surveys often overlook nocturnal bioluminescent insects, leading to fragmented data and poor monitoring continuity [42]. Citizen science initiatives, such as community-based firefly monitoring and awareness campaigns, have proven effective in recording occurrences and raising public consciousness [43].

However, the absence of standardized survey methods, taxonomic uncertainty, and inadequate molecular databases hinder effective conservation planning.

To safeguard these species, interdisciplinary research integrating taxonomy, molecular ecology, habitat restoration, and light management policies is crucial. Protecting riparian vegetation, regulating pesticide usage, and designating dark-sky reserves near firefly habitats could serve as immediate steps. Without these measures, India risks losing not only its bioluminescent heritage but also vital ecological indicators of environmental health.

Conservation Strategies and Future Prospects

The declining populations of fireflies in India necessitate urgent and integrative conservation interventions that address both ecological and socio-environmental dimensions. Considering their dual significance as bioindicators and symbols of nocturnal biodiversity, firefly conservation must transition from incidental documentation to active habitat and light management initiatives.

A primary strategy involves habitat restoration and protection, particularly in riparian and semi-aquatic ecosystems where many *Luciolinae* species thrive. Conservation programs in protected landscapes such as the Anamalai Tiger Reserve and Kanger Valley National Park have shown that maintaining native vegetation, minimizing deforestation, and preserving natural hydrology sustain higher firefly densities [44]. Restoration of degraded wetlands and riverbanks, combined with restrictions on pesticide use and the adoption of organic farming near sensitive habitats, can mitigate larval mortality and improve reproductive success.

Equally vital is light pollution management, a globally recognized driver of behavioral disruption in luminous beetles. Establishing "dark-sky zones" within biodiversity hotspots and enforcing guidelines for low-intensity, warm-spectrum lighting around rural and peri-urban ecosystems can help restore natural signaling patterns [45]. Incorporating these principles into urban planning and eco-tourism policies would also reduce nocturnal ecological disturbance.

Table No. 01: Checklist of Firefly Species Reported from India

No.	Scientific Name (Coleoptera: Lampyridae)	Common Name	Distribution in India	IUCN Red List Status
1	<i>Abscondita chinensis</i> (Linnaeus, 1767)	Chinese Firefly	Andhra Pradesh, Assam, West Bengal	Not Evaluated (NE)
2	<i>Abscondita perplexa</i> (Walker, 1858)	—	Tamil Nadu (Anamalai TR), Chhattisgarh	Not Evaluated (NE)
3	<i>Abscondita terminalis</i> (Olivier, 1883)	—	West Bengal, Odisha	Not Evaluated (NE)
4	<i>Asymmetrica circumdata</i> (Motschulsky, 1854)	—	Assam, Meghalaya	Not Evaluated (NE)
5	<i>Luciola aurantiaca</i> (Motschulsky, 1860)	—	Eastern and Southern India	Not Evaluated (NE)
6	<i>Luciola substriata</i> (Gorham, 1880)	Aquatic Firefly	Assam, West Bengal	Not Evaluated (NE)
7	<i>Luciola praeusta</i> (Motschulsky, 1860)	Common Indian Firefly	Peninsular India	Not Evaluated (NE)
8	<i>Triangulara frontoflava</i> Pimpasalee, 2016	—	Odisha, West Bengal	Not Evaluated (NE)
9	<i>Pteroptyx malaccae</i> (Gorham, 1880)	Synchronizing Firefly	West Coast (Kerala, Karnataka)	Not Evaluated (NE)
10	<i>Lamprigera tenebrosa</i> (Walker, 1858)	Giant Glow-worm	Uttarakhand (Doon Valley)	Not Evaluated (NE)
11	<i>Lamprigera yunnana</i> (Fairmaire, 1897)	—	Northeastern India (Arunachal Pradesh)	Not Evaluated (NE)
12	<i>Lamprigera flavoscutellata</i> (Motschulsky, 1854)	—	Meghalaya, Sikkim	Not Evaluated (NE)
13	<i>Pyrocoelia rufa</i> (Olivier, 1886)	Red Firefly	Northeastern India	Not Evaluated (NE)
14	<i>Pyrocoelia analis</i> (Fabricius, 1801)	—	Eastern Himalaya	Not Evaluated (NE)
15	<i>Curtos costipennis</i> (Walker, 1858)	—	Western Ghats	Not Evaluated (NE)
16	<i>Luciola lateralis</i> (Motschulsky, 1860)	—	Eastern Himalaya, West Bengal	Not Evaluated (NE)
17	<i>Abscondita cerata</i> (Olivier, 1907)	—	Northeast India	Not Evaluated (NE)
18	<i>Luciola indica</i> (Motschulsky, 1854)	Indian Firefly	Central & Southern India	Not Evaluated (NE)

Community participation and citizen science represent powerful tools for long-term conservation. The Indian "Firefly Survey" program demonstrated how local volunteers can successfully record species occurrences, identify flashing patterns, and detect regional declines [46]. Expanding such participatory models nationwide particularly in rural and tribal landscapes would not only generate valuable population data but also enhance public stewardship and awareness.

Future conservation must also integrate scientific and technological advancements. Molecular barcoding, luciferase gene characterization, and spatial mapping using GIS can refine taxonomy and identify priority habitats for protection [47]. Coordinated databases linking ecological, biochemical, and behavioral data could serve as an early-warning system for population changes under climatic and land-use stress.

In conclusion, safeguarding India's firefly fauna requires a multi-tiered approach combining habitat restoration, light regulation, eco-education, and genomic research. Sustained collaboration among entomologists, policymakers, forest departments, and local communities will be instrumental in ensuring that these "vanishing lights" continue to illuminate India's nocturnal ecosystems.

Conclusion

Fireflies represent one of the most enchanting yet ecologically significant insect groups of India, symbolizing both natural wonder and environmental health. This review reveals that the Indian subcontinent harbors considerable Lampyrid diversity, encompassing more than forty-five recorded species belonging to genera such as *Abscondita*, *Asymmetricata*, *Lamprigera*, *Luciola*, and *Pteroptyx* [48]. These taxa inhabit diverse ecosystems from moist deciduous forests and paddy fields to riparian and montane habitats demonstrating India's wide biogeographic range and ecological adaptability. However, despite this diversity, firefly populations are undergoing an alarming decline across much of the country.

The collective evidence from field surveys, biochemical studies, and citizen science initiatives highlights the multifaceted nature of threats to these luminous beetles. Habitat degradation, artificial light pollution, pesticide contamination, and climate variability have collectively reduced their abundance and disrupted reproductive communication [49]. Such declines are not only a loss of aesthetic beauty but also a warning sign of ecosystem imbalance, given fireflies' role as bioindicators of environmental quality and contributors to nutrient cycling. Conservation of fireflies in India demands an integrative, science-based, and community-oriented approach.

Protecting riparian vegetation, maintaining pesticide-free buffer zones, and restoring wetland habitats are essential ecological interventions. Equally important is the regulation of nocturnal illumination near sensitive ecosystems and the promotion of "dark-sky zones" to preserve natural bioluminescent communication [50]. Citizen science projects, such as the *Firefly Survey of India*, demonstrate the potential of public engagement in monitoring species occurrence and spreading environmental awareness.

Prospects for firefly conservation lie in combining molecular tools, such as luciferase gene sequencing and DNA barcoding, with GIS-based habitat modeling to develop region-specific conservation plans [51]. Integrating these scientific advances with indigenous knowledge and local participation will ensure sustainable conservation outcomes.

In essence, the vanishing glow of India's fireflies serves as a silent indicator of ecological degradation and a clarion call for immediate conservation action. Safeguarding these "living lights" is not merely about preserving an aesthetic marvel it is about maintaining ecological integrity and fostering coexistence between biodiversity and human progress.

References

1. Ballantyne, L., Lambkin, C. L., & Fu, X. (2019). Systematic review of *Luciolinae* (Coleoptera: Lampyridae). *Zootaxa*, 4631(1), 1–174.
2. Ghosh, S., Sarkar, S. K., & Chakraborty, S. K. (2021). Two new records of the subfamily *Luciolinae* (Coleoptera: Lampyridae) with a checklist of genus *Abscondita* from India. *Journal of Asia-Pacific Biodiversity*, 14(1), 53–59. <https://doi.org/10.1016/j.japb.2020.10.004>
3. Ghosh, S., Saha, S., & Chakraborty, S. K. (2023). The floral associates of fireflies (Coleoptera: Lampyridae: Luciolinae) as recorded in two eastern Indian states with reference to their display plants. *Journal of Asia-Pacific Biodiversity*, 16(2), 174–183. <https://doi.org/10.1016/j.japb.2023.03.008>
4. Ghosh, S., & Chakraborty, S. K. (2025). Bioaccumulation and biotransportation of heavy metals along a water-soil-plant-firefly (Coleoptera: Lampyridae: Luciolinae) food chain: A case study from the southern Gangetic plains, West Bengal, India. *Nature Environment and Pollution Technology*, 24(4), Article B4300.
5. Harvey, E. N. (1940). *Living Light: A History of Bioluminescence*. Princeton University Press.
6. Jaikla, S., Wongprom, P., & Jusoh, W. F. A. (2020). Behavioral ecology of Southeast Asian fireflies. *Environmental Entomology*, 49(3), 678–692.
7. Rana, N., Rayal, R., & Uniyal, V. P. (2022). Firefly survey: Adopting citizen science approach to record the status of flashing beetles. *Journal of Threatened Taxa*, 14(10), 22016–22020. <https://doi.org/10.11609/jott.7939.14.10.22016-22020>
8. Takeda, M., Amano, T., & Yuma, M. (2006). Effects of environmental degradation on the population decline of the Japanese firefly *Luciolacruiciata*. *Ecological Research*, 21(4), 489–496.
9. Choudhury, K., Ali, F., Basumatary, B., Barman, M., Das, P., & Singha, H. (2025). Habitat-specific distribution and density of fireflies (Coleoptera: Lampyridae): A comparative study between grassland and woodland habitats. *Journal of Threatened Taxa*, 17(10), 27761–27765. <https://doi.org/10.11609/jott.9656.17.10.27761-27765>
10. Mishra, A., Joshi, Y. K., & Jayashankar, M. (2025). Plant-firefly interactions in Kanger Valley National Park, Chhattisgarh, India. *Indian Journal of Ecology*, 52(5), 1018–1022. <https://doi.org/10.55362/IJE/2025/4609>
11. Potulwar, S. V., Phad, U. M., Khelbade, B. M., & Achegawe, R. M. (2025). Fireflies as global bioindicators of pollution-free environments: Special reference to Painganga Wildlife Sanctuary. *International Journal of Entomology Research*, 10(4), 32–40.
12. Ragavendran, K., Paulraj, M. G., Ranjani, S. S., Selvakumar, S., Eswaran, D., & Senbagapriya, S. (2025). *Fireflies: Diversity, distribution, habitats and their ecology in Anamalai Tiger Reserve*. Project Report, Advanced Institute for Wildlife Conservation (R, T & E), Tamil Nadu Forest Department.
13. Rana, N., Rayal, R., & Uniyal, V. P. (2022). Firefly survey: Adopting citizen science approach to record the status of flashing beetles. *Journal of Threatened Taxa*, 14(10), 22016–22020. <https://doi.org/10.11609/jott.7939.14.10.22016-22020>
14. Chatragadda, R. (2020). Decline of luminous firefly *Absconditachinensis* population in Barrankula, Andhra Pradesh, India. *International Journal of Tropical Insect Science*, 40(1), 1–9. <https://doi.org/10.1007/s42690-019-00078-7>
15. Ghosh, S., Sarkar, S. K., & Chakraborty, S. K. (2023). New distributional records of fireflies (Coleoptera: Lampyridae: Luciolinae) from two Eastern States of India with notes on their biology and an updated Indian checklist. *Biodiversity Data Journal*, 11, e10848650. <https://doi.org/10.3897/BDJ.11.e10848650>
16. Lewis, S. M., Wong, C. H., Owens, A. C. S., Fallon, C., Jepsen, S., Thancharoen, A., Wu, C., De Cock, R., Novák, M., López-Palafox, T., & Reed, J. M. (2020). A global perspective on firefly extinction threats. *BioScience*, 70(2), 157–167. <https://doi.org/10.1093/biosci/biz157>
17. Ragavendran, K., Paulraj, M. G., Ranjani, S. S., Selvakumar, S., Eswaran, D., & Senbagapriya, S. (2025). *Fireflies: Diversity, distribution, habitats and their ecology in Anamalai Tiger Reserve*. Project Report, Tamil Nadu Forest Department.
18. Rana, N., Rayal, R., & Uniyal, V. P. (2022). Firefly survey: Adopting citizen science approach to record the status of flashing beetles. *Journal of Threatened Taxa*, 14(10), 22016–22020. <https://doi.org/10.11609/jott.7939.14.10.22016-22020>
19. Singh, M., & Nag, J. R. (2020). Fireflies are on the verge of extinction in Ambikapur district, Surguja, Chhattisgarh, India. *International Journal of Research Publication and Reviews*, 2(4), 239–241.
20. Ghosh, S., Sarkar, S. K., & Chakraborty, S. K. (2021). Two new records of the subfamily *Luciolinae* Lacordaire, 1857 (Coleoptera: Lampyridae) with a checklist of genus *Abscondita* from India. *Journal of Asia-Pacific Biodiversity*, 14(1), 53–59. <https://doi.org/10.1016/j.japb.2020.10.004>
21. Ghosh, S., Bera, D., & Chakraborty, S. K. (2025). Plasticity of foraging behaviour in the firefly species *Absconditaterminalis* (Coleoptera: Lampyridae: Luciolinae) inhabiting two contrasting habitats in West Bengal, India. *Records of the Zoological Survey of India*, 125(2S), 541–544. <https://doi.org/10.26515/rzsi/v125/i2S/2025/173009>
22. Mitani, Y., Kanie, S., Girisa, S., Kunnumakkara, A. B., Kaul, S. C., & Ohmiya, Y. (2025). Characterization of luciferase from an Indian firefly *Abscondita* sp. (Coleoptera: Lampyridae). *Photochemistry and Photobiology*, 101(3), 1–7. <https://doi.org/10.1111/php.70001>
23. Rana, N., & Rayal, R. (2024). First record of *Lamprigeratenebrosa* (Walker, 1858) subfamily *Lampyrinae* from Doon Valley, Uttarakhand, Western Himalaya, India. *Indian Forester*, 150(4), 396–400. <https://doi.org/10.36808/if/2024/v150i4/170096>
24. Ghosh, S., Sarkar, S. K., & Chakraborty, S. K. (2023). New distributional records of fireflies (Coleoptera, Lampyridae, Luciolinae) from two Eastern States of India with notes on their biology and an updated Indian checklist. *Biodiversity Data Journal*, (PMC10848650).

25. Goswami, A., Sharma, U., Rabha, M. M., Rajbongshi, S. C., & Barua, A. G. (2015). *Steady-state and time-resolved bioluminescence of the firefly Asymmetricata circumdata (Motschulsky)*. *Current Science*, 109(10), 1838–1840.

26. Jahgirdar, A. S. (2024). *Fireflies from the Indian environment*. *Aghanaashini Tales*, 1(3), 21–22. Aghanaashini Nature Foundation.

27. Jeng, M.-L., Lai, J., & Yang, P.-S. (2003). *Lampyridae: A synopsis of aquatic fireflies with description of a new species (Coleoptera)*. *Water Beetles of China*, III, 539–562.

28. Mishra, A., Joshi, Y. K., & Munirathinam, J. (2024). *Fireflies of Kanger Valley National Park: Floral associates, faunal relationships and myths and beliefs*. Department of Zoology, St. Joseph's University, Bengaluru.

29. Mitani, T., et al. (2025). *Characterization of luciferase from an Indian firefly Abscondita sp. (Coleoptera: Lampyridae)*. *Photochemistry and Photobiology*, 101(2), 153–163.

30. Chatragadda, R. (2020). *Decline of luminous firefly Absconditachinensis population in Barrankula, Andhra Pradesh, India*. *International Journal of Tropical Insect Science*, 40(1), 1–9. <https://doi.org/10.1007/s42690-019-00078-7>

31. Ghosh, S., & Chakraborty, S. K. (2025). *Bioaccumulation and biotransportation of heavy metals along a water-soil-plant-firefly food chain: A case study from the southern Gangetic plains, West Bengal, India*. *Nature Environment and Pollution Technology*, 24(4), B4300.

32. Jahgirdar, A. S. (2024). *Fireflies from the Indian environment*. *Aghanaashini Tales*, 1(3), 21–22. Aghanaashini Nature Foundation.

33. Lewis, S. M., Wong, C. H., Owens, A. C. S., Fallon, C., Jepsen, S., Thancharoen, A., Wu, C., De Cock, R., Novák, M., López-Palafox, T., & Reed, J. M. (2020). A global perspective on firefly extinction threats. *BioScience*, 70(2), 157–167. <https://doi.org/10.1093/biosci/biz157>

34. Mishra, A., Joshi, Y. K., & Munirathinam, J. (2024). *Fireflies of Kanger Valley National Park: Floral associates, faunal relationships and myths and beliefs*. Department of Zoology, St. Joseph's University, Bengaluru.

35. Ragavendran, K., Paulraj, M. G., Ranjani, S. S., Selvakumar, S., Eswaran, D., & Senbagapriya, S. (2025). *Fireflies: Diversity, distribution, habitats and their ecology in Anamalai Tiger Reserve*. Tamil Nadu Forest Department.

36. Rana, N., & Rayal, R. (2024). *First record of Lamprigeratenebrosa (Walker, 1858) from Doon Valley, Uttarakhand, Western Himalaya, India*. *Indian Forester*, 150(4), 396–400. <https://doi.org/10.36808/if/2024/v150i4/170096>

37. Rana, N., Rayal, R., & Uniyal, V. P. (2022). *Firefly survey: Adopting citizen science approach to record the status of flashing beetles*. *Journal of Threatened Taxa*, 14(10), 22016–22020. <https://doi.org/10.11609/jott.7939.14.10.22016-22020>

38. Singh, M., & Nag, J. R. (2020). *Fireflies are on the verge of extinction in Ambikapur district, Surguja, Chhattisgarh, India*. *International Journal of Research Publication and Reviews*, 2(4), 239–241.

39. Lewis, S. M., Wong, C. H., Owens, A. C. S., Fallon, C., Jepsen, S., Thancharoen, A., Wu, C., De Cock, R., Novák, M., López-Palafox, T., & Reed, J. M. (2020). A global perspective on firefly extinction threats. *BioScience*, 70(2), 157–167. <https://doi.org/10.1093/biosci/biz157>

40. Mishra, A., Joshi, Y. K., & Munirathinam, J. (2024). *Fireflies of Kanger Valley National Park: Floral associates, faunal relationships and myths and beliefs*. Department of Zoology, St. Joseph's University, Bengaluru.

41. Mitani, Y., Kanie, S., Girisa, S., Kunnumakkara, A. B., Kaul, S. C., & Ohmiya, Y. (2025). Characterization of luciferase from an Indian firefly *Abscondita* sp. (Coleoptera: Lampyridae). *Photochemistry and Photobiology*, 101(3), 1–7. <https://doi.org/10.1111/php.70001>

42. Ragavendran, K., Paulraj, M. G., Ranjani, S. S., Selvakumar, S., Eswaran, D., & Senbagapriya, S. (2025). *Fireflies: Diversity, distribution, habitats and their ecology in Anamalai Tiger Reserve*. Tamil Nadu Forest Department.

43. Rana, N., Rayal, R., & Uniyal, V. P. (2022). *Firefly survey: Adopting citizen science approach to record the status of flashing beetles*. *Journal of Threatened Taxa*, 14(10), 22016–22020. <https://doi.org/10.11609/jott.7939.14.10.22016-22020>

44. Pandey, C., Thiskei, S., Rawte, K., Kumar, A., Guru, G. S. "Diversity and variability of paddy pests in Rajnagaoon district of Chhattisgarh: A threat to agricultural sustainability". *International Journal of Entomology Research*, Volume 9, Issue 12, 2024, Pages 160–165

45. Lewis, S. M., Jusoh, W. F., Walker, A. C., Fallon, C. E., Joyce, R., & Yiu, V. (2024). Illuminating firefly diversity: Trends, threats and conservation strategies. *Insects*, 15(1), 71.

46. Cheng, S., Faidi, M. A., Tan, S. A., Vijayanathan, J., Malek, M. A., Bahashim, B., & Isa, M. N. M. (2021). *Fireflies in Southeast Asia: knowledge gaps, entomotourism and conservation*. *Biodiversity and Conservation*, 30(4), 925–944.

47. Nada, B., Beckerman, A. P., Evans, K. L., & Ballantyne, L. A. (2023). The effects of tropical elevations and associated habitat changes on firefly (Coleoptera: Lampyridae) diversity in Malaysia. *Diversity*, 15(1), 79.

48. Seri, N. A., & Rahman, A. A. (2024). Application of GIS for Monitoring Firefly Population Abundance (*Pteroptyx tener*) and the Influence of Abiotic Factors. *Pertanika Journal of Science & Technology*, 32(6).

49. Kalinkat, G., Jechow, A., Schroer, S., & Höller, F. (2025). Nocturnal pandas: conservation umbrellas protecting nocturnal biodiversity. *Trends in Ecology & Evolution*.

50. Khan, W. A., Hamadneh, N. N., Tilahun, S. L., & Ngnotchouye, J. M. (2016). *A review and comparative study of firefly algorithm and its modified versions*. IntechOpen.

51. Tilahun, S. L., Ngnotchouye, J. M. T., & Hamadneh, N. N. (2019). Continuous versions of firefly algorithm: a review. *Artificial Intelligence Review*, 51(3), 445–492.

52. Ishii, M., & Nakamura, Y. (2012). Development and future of insect conservation in Japan. In *Insect conservation: Past, present and prospects* (pp. 339–357). Dordrecht: Springer Netherlands.

53. Scheling, L. (2007). Ecological Consequences of Artificial Night Lighting. *Natural Areas Journal*, 27(3), 281–282.